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Synopsis

Channeling of 700-keV electrons in silicon has been investigated by measurements of the 
large-angle scattering yield from thin single crystals as a function of incidence direction. The 
peaks in yield for incidence parallel to low-index planes and axes are compared mainly to cal
culations based upon the dynamical theory of electron diffraction. This description is reviewed in 
a formulation emphasizing similarity to the classical theory of channeling. The relationship 
between the two descriptions is discussed, and correspondence in the limit of large quantum 
numbers is illustrated, partly by the example of a harmonic oscillator, partly by analytical results 
for a simple model, derived within the WKB approximation. Estimates of the magnitude of the 
quantum numbers associated with the transverse motion of channeled particles are derived 
semiclassically from the available phase space for bound states in the transverse continuum 
potential, and the importance of distinguishing between axes and planes and between positive 
and negative particles, is pointed out. These qualitative considerations are supplemented with 
results of numerical calculations, based upon the classical channeling theory and the dynamical 
theory of electron diffraction, respectively. This comparison illustrates the transition to the 
classical limit for increasing projectile mass and provides a quantitative test of the correspondence 
criteria based on semiclassical estimates.
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Introduction

This study of electron and positron channeling may be seen as part of a 
general investigation of the channeling of light particles which, during the 
last decade, has been performed partly at the University of Aarhus, partly at 
Bell Telephone Laboratories. Motivated by the strong channeling effects 
found for heavy particles (protons, a particles, etc.)1’2, attemps were made to 
look for similar phenomena for electrons penetrating single crystals3. The 
basic features of the channeling effect for both positrons and electrons were 
first established by Uggerhøj in a beautiful experiment4, where the angular 
distribution of electrons and positrons, emitted by 64Cu embedded in a 
copper single crystal, were studied simultaneously. The observation of an 
axial dip in yield for positrons, and a peak for electrons, was in qualitative 
agreement with expectations based upon the theory5 of heavy-particle 
channeling. The measurement was continued in order to obtain more 
quantitative data, and the results were found to be in fair agreement with 
estimates based upon classical mechanics6.

A basic difficulty in such emission experiments is the damage due to 
implantation of the radioactive atoms. To avoid this problem, experiments 
with external beams of electrons and positrons were initiated. A measure
ment of the large-angle scattering yield as a function of direction for an 
external beam is, in principle, equivalent to a determination of the angular 
distribution of particles emitted from lattice sites (reversibility5 or reci
procity7).

Positron channeling in gold8 and silicon9 was studied with an external 
beam. The general result was that positron channeling is adequately des
cribed by the channeling theory based upon classical mechanics, although 
for planar channeling some fine structure due to Bragg interference was 
observed.

For electrons the situation is somewhat different10. Owing to their negative 
charge, electrons penetrate readily to the atomic scattering centers in the 
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rows and planes. Incoherent multiple scattering will therefore be stronger 
than for positive particles. Furthermore, it may be seen from semiclassical 
phase-space estimates that the number of bound states in the transverse 
potential is quite large in most cases for channeled positrons, while for 
electrons it is considerably larger than unity only at relativistic energies.

The possibility of electron motion in bound states along rows of atoms, 
describable to some extent by classical mechanics, was first studied theor
etically by Lindhard11. In an experimental study of electron channeling in 
gold by Uggerhøj et al.12, the interest was focussed on classical aspects of 
axial channeling and on predictions from the classical treatment. Later 
the measurements have been extended13 to higher energies and to include 
also planar effects and a detailed comparison to many-beam calculations. 
Parallel to these investigations, the measurements to be reported here of the 
channeling of 700-keV electrons in silicon were undertaken. Results on 
axial channeling were included in the discussion by Uggerhøj et al.12>13.

Electron channeling was approached independently on the basis of the 
well-established theory for the phenomena observed in electron microsco
py14. Angular variations of the electron-backscattering yield for incidence 
close to a planar direction were predicted by Hirsch et al.15 and found 
experimentally by Duncomb16. In the study by Hall17 of the effect of lattice 
structure on the yield of characteristic x rays, the main emphasis was on a 
detailed description of the thickness dependence due to inelastic scattering. 
Later Howie et al.18 studied the emission of electrons from neutron-activated 
thin crystals and compared to both classical calculations and calculations 
based upon diffraction theory. It is a common feature of these experiments 
that only planar channeling has been investigated. From the point of view 
of diffraction theory, an axis is basically an intersection of a set of planes, 
and nothing much but unnecessary complications is gained by studying 
channeling close to an axial direction19. In Lindiiard’s theoretical work on 
channeling, however, the axial case is qualitatively different from the planar 
case. For heavy positive particles, axial effects are stronger than planar 
effects and therefore, from most points of view, more interesting. Also, for 
electrons and positrons, the quantum numbers associated with axial effects 
are larger than for planar effects, and classical concepts may therefore more 
readily be applied to the axial case.

The attempts4-6 mentioned’earlier to relate the channeling phenomena for 
electrons and positrons to classical channeling theory for heavy particles 
were met with strong criticism. The possibility of understanding electron and 
positron channeling on the basis of electron-diffraction theory was first 
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pointed out by Howie20 and later argued strongly by de Wames et al. in a 
series of publications21. The resulting, at times rather heated, discussion 
greatly stimulated the interest in channeling of light particles and, more 
specifically, in the problem of correspondence between classical and quantal 
calculations related to channeling 22~25. For fairly recent reviews of the field, 
and discussions of correspondence from different points of view, we may 
refer to Refs. 26-28.

Correspondence between classical and quantal treatment of channeling 
phenomena is the main theme of the present study. It is composed of four 
parts. The first is a report on an experimental investigation of electron 
channeling in silicon, performed at Bell Telephone Laboratories in 1968. 
The main emphasis is on measurements of axial and planar peaks in yield 
of large-angle scattering. While electron microscopy is based on wave in
terference observed in transmission, the most interesting and useful phen
omenon associated with classical channeling is the strong angular depend
ence of the yield of processes which require a close encounter between 
projectiles and target atoms.

The experimental results are compared mainly to calculations based 
upon the dynamical theory of electron diffraction. This theoretical description 
is in the second part reviewed briefly in a formulation which emphasizes 
similarity to the classical description of channeling. Problems related to 
incoherent scattering are discussed qualitatively, and examples are given 
of the treatment in terms of an imaginary potential and scattering into plane
wave states.

Correspondence with the classical treatment is discussed in the third 
part and illustrated partly by an analysis of the example of a harmonic 
oscillator, partly by some simple calculations based upon the WKB appro
ximation. This general analysis is followed in the fourth part by a derivation 
from semiclassical phase-space arguments of estimates of the number of 
bound states in the transverse motion of channeled particles, leading to 
simple criteria for the applicability of a classical description. Differences 
between positive and negative particles, and also between the axial and planar 
cases, are discussed on the basis of two examples. The transition to the 
classical limit is then investigated quantitatively by a comparison of classical 
and quantal calculations for different electron and positron energies. At 
high energy, where the number of bound states becomes large owing to the 
increase in relativistic projectile mass, the quantal results approach the 
classical predictions. These are for the planar case obtained from the 
formalism developed for heavy positive particles29. For negative particles, 
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the axial case presents special problems, in particular concerning the appli
cability of results obtained from the assumption of statistical equilibrium in 
the transverse motion. These problems are discussed in the appendix, which 
contains the derivation of a classical estimate of the axial peak in yield for 
negative particles, based on statistical equilibrium.

I. Experimental Study of Electron Channeling in Silicon

I. /. Experimental procedure

Setup. A sketch of the experimental arrangement is shown in Fig. 1.1. 
The electron beam, with an initial energy of 800 keV, is scattered by a 30-/zm 
gold foil. The current of electrons transmitted through the foil into the 
Faraday cup is used to monitor the beam intensity. The electrons scattered 
by 90° lose on the average ~ 100 keV in the gold foil, leading to a final beam 
energy of ~ 700 keV, with a measured spread of 85-keV FWHM. The 
angular spread of 0.05° full width is delined by a 1-mm collimator placed 
immediately in front of the gold foil and a 0.4-mm collimator at the entrance 
to the scattering chamber.

The beam is incident on a thin silicon crystal, mounted in a goniometer 
with two perpendicular rotations. The scattering chamber contains three 
different detection systems:

(i) Annular detector for electrons scattered through ~ 10-20° by the 
crystal.

(ii) Movable detector (‘forward detector’) to scan the intensity distribution 
in the forward direction. Both detectors are silicon surface-barrier 
detectors.

(iii) Film to record photographically the angular intensity distribution in the 
forward direction.

Crystals. The thin crystals were prepared by etching 0.15-mm thick 
silicon wafers, cut perpendicular to a <110> direction. A thicker ring was left 
at the edge for support. The crystals were mounted by sandwiching them 
between aluminum and Incite plates with a 5-mm hole in the center. Mount
ing the thinner crystals was a delicate operation, after which a careful 
examination for wrinkles was necessary.

Results for two thicknesses are reported. From an a-particle, energy loss 
measurement, the thicker crystal was estimated to be 2.8 pm thick. Un
fortunately the thinner crystal was broken before a similar meassurement
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could be made, but from the relative electron-scattering yield, its thickness 
was estimated to be 0.2—0.3 zzm.

Measuring procedure. The orientation of the crystal was determined by the 
standard technique known from proton channeling30. The planes were 
identified by an increase in yield of the scattering into the annular detector. 
A stereogram was constructed, and thus the rotation parameters corres
ponding to various planar and axial directions could be determined.

Angular scans through major planes and axes were performed by 
measuring the yield of scattering into the annular detector for a fixed accum
ulated charge in the Faraday cup. In preliminary experiments, the “forward 
detector” was used, positioned at some large angle to the beam direction. 
Strong asymmetries of the peaks in yield were observed, however, and these 
asymmetries turned out to be dependent on the position of the detector. 
Such effects are known also for proton channeling and are usually ascribed 
to “blocking” of the scattered particles. In this case, however, the solid angle 
subtended by the detector was very large compared to the widths of the 
channeling peaks. Also asymmetries were seen, depending only on the 
detector being ‘to the left’ or ‘to the right’ of the beam direction. Rather than 
investigate these phenomena in detail, it was decided to use an annular 
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counter which is axially symmetric and averages over a very large solid 
angle.

The forward detector was then used to scan angular distribution of the 
beam after its passage through the crystal. Because of the small distance from 
the crystal, the angular resolution was not very good. A better resolution 
was obtained in the photographic exposures.

1.2. Results

Results from measurements on two samples of thickness 0.2-0.3 //in and 
2.8 /mi, respectively, are reported. The thickness may be compared to the 
mean-free path for scattering, defined as I = (No)-1, where o is the total 
atomic scattering cross section and N the density of atoms, N = 5 x 1022 
cm-3 for Si. A simple estimate of o is obtained in the Born approximation 
for an exponentially screened Coulomb potential,

II ere, Zxe and Z2e are the charges of the particle and the scattering nucleus, 
and v is the particle velocity. While for x > 1, the collision may be described 
by classical mechanics31, the Born approximation is valid in the limit of 
x < 1. In the present case, we have x2 0.05. For the screening parameter a, 
we way may insert the Thomas-Fermi screening radius, a = 0.8853 Z2 1/3 aQ, 
where a0 is the Bohr radius, a0 = 0.53 Å. This leads to a cross section of 
d ~ 5 x 10“3 Å2 and a mean-free path for scattering, I cc 4000 Å. More 
accurate calculations indicate that such a simple estimate is probably not 
far off32. According to Eq. (1,1), I depends on Z2 approximately as I <x Z2 4/3 
for fixed electron energy. The scattering length in gold will then be roughly 
ten times shorter, in good agreement with the measured value of / 400 Å
for 1-MeV electrons12.

Thus the thickness of the thinner sample is comparable to the scattering 
length, whereas the thickness of the thicker sample corresponds to about 11. 
The angular distributions of the transmitted electrons were in qualitative 
agreement with these estimates. For the thinner sample, the distribution 
consisted of an unscattered, central peak with tails due to single (or plural) 
scattering, whereas for the thicker sample, no central peak was observed.

o = natø, (1.1)

where a is the screening parameter and x is defined as

2|Z1|Z2e2x = ' 11 2 . (1,2)
hv
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Fig. 1.2: Scan through {111} plane for the 
0.2-0.3-^m sample. The crosses are experi
mental points, and the fully drawn curve is the 
result of a nine-beam calculation for a static 
lattice. Bragg reflections of order up to ± 4 are 

included (9 beams).

e/sB
Fig. 1.3: Scan through {110} plane for the 
0.2-0.3-/zm sample. This calculation includes 
reflections of order up to ± 3 (7 beams). The 
error flag on the upper right-hand side indi
cates beam divergence and statistical uncer

tainty of the measurements.

As mentioned above, the angular resolution in scans with the forward 
detector was too poor for quantitative measurements. More direct information 
on the scattering and its variation with incidence direction is obtained from 
the yield of large-angle scattering into the annular detector.

0.2 0.3 ym crystal. Scans through the three major planes, {111}, {110}, 
and {100} are shown in Figs. 1.2—1.4. The measured yields are normalized 
to the yield in a “random” (nonsymmetry) direction. The angle with the 
plane is given in units of the Bragg angle, 0B = Ål(2dp), where Â is the electron 
wavelength and dp the planar spacing. We shall discuss the calculations in 
more detail in the following chapter. Inelastic scattering is not included, and 
thus the discrepancy in peak height, due to attenuation with depth, is to be 
expected. If, for simplicity, exponential damping with depth is assumed, the 
measurements indicate that the length corresponding to a reduction by 1/e is 
approximately equal to the crystal thickness (cf. also Sec. II.7).

The general peak shapes are rather well reproduced by the calculations. 
For the {110} and {100} planes, the width is twice the Bragg angle, whereas 
for the strongest plane, the {111}, the width is 4 to 5 times 0B. The peculiar 
shape of the {111} peak is due to the diamond structure of silicon. Each 
{111} atomic plane is split into two planes with a separation of dp/4. The
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Fig. 1.4: Scan through {100} plane for the 
0.2-0.3-,um sample compared with five-beam 
calculation. The error flag on the upper right
hand side indicates beam divergence and 
statistical uncertainty of the measurements.

s/eB

Fig. 1.5: Film exposures of the forward beam for the 0.2-0.3 fj,m sample. The upper series of four 
exposures corresponds to the incidence angles of 30ß, 20ß, and Oß, and 0 with respect to a {111} 
plane. The lower two exposures correspond to incidence angles of 6ß and 0 with respect to a 

{110} plane.
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Fig. 1.7: Scan through a <(111)> axis for the 
0.2-0.3-//IH sample. The experimental results 
are compared to the peak in yield obtained 
from a 49-beam calculation. Effects of thermal 
vibrations are included, but inelastic scattering 
is not. Instead, the calculated increase in yield 
has been multiplied by 0.5 as in the previous 

figure (cf. also Fig. II.4).

Fig. 1.6: Scan through the (110) axis for the 
0.2-0.3-/ZII1 sample. The experimental results 
are compared to the classical formula derived 
in the Appendix. The calculated excess yield 
has been multiplied by 0.5 to account appro
ximately for inelastic scattering. The error flag 
on the upper right-hand side indicates beam 
divergence and statistical uncertainty of the 

measurements.

{110} and {100} planes are regularly spaced. Finally, we note that the beam 
collimation was not sufficient to resolve the “wiggles” at high-order Bragg- 
reflection positions. There are, however, slight indications of these wiggles, 
especially in the {100} scan.

For selected directions of indicence, photographic exposures of the 
transmitted beam were taken. Two series of exposures are shown in Fig. 1.5. 
The upper four exposures correspond to beam incidence at angles 30b, 
20b, 0b, and 0 (left to right) relative to a {111} plane. In this case, the Bragg 
angle is 0b ~ 0.1°, and the distance between the spots is 20b ~ 0.2°. The 
spot corresponding to the incidence direction is the most intense one (second 
from the right). Below are two exposures for beam incidence at an angle of 
0B 0.17° and parallel to a {110} plane, respectively. All spots in the figure 
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have a pronounced tail. This corresponds to a low-energy tail of the beam
energy distribution since electrons of lower energies are deflected slightly 
more by the earth magnetic field.

Scans through the <110) and (111) axes are shown in Figs. 1.6 and 1.7. 
The peaks are much stronger than the planar ones, rising by about a factor 
of three over normal yield. The <110) peak is compared to the classical 
prediction derived in the Appendix. The theoretical curve is multiplied by a 
factor of 0.5. The width and shape of the peak are then quite well reproduced. 
Since the attenuation with depth is expected to be stronger than for planes, 
also the absolute agreement is reasonable.

The peak along the weaker <111) axis is compared to a many-beam 
calculation, multiplied also by a factor of 0.5, to correct roughly for inelastic 
scattering (cf. Sec. 11.7). The widths are in good agreement and signific
antly narrower than predicted by a classical estimate. This qualitative dif
ference between the two axes is also apparent in the diffraction patterns dis
cussed below.

Film exposures of the transmitted beam for incidence close to an axis 
are shown in Fig. 1.8. The exposures in the upper series are taken at tilts 
of 0.6°, 0.4°, 0.2°, and 0° from the (111) direction. The series below cor
responds to incidence angles of 0.75°, 0.50°, 0.25°, and 0° relative to a <110) 
direction (from left to right). The strongest spot, corresponding to the in
cidence direction, is fairly easy to identify in the upper series. In the lower 
series, the spots are very poorly resolved, but it is evident that quite a large 
number of reflections are excited. Especially at the larger tilt angles to the 
<110) axis, the scattering is clearly seen to be confined to a ring around the 
axis, corresponding to conservation of transverse energy5. In the terminology 
of the theory of electron diffraction, the observed pattern is denoted the 
zero-order Laue zone and corresponds to the intersection of the Ewald 
sphere with a plane in the reciprocal lattice14.

2.8-jUm crystal. Angular scans through the three major planes, {111}, 
{110}, and {100}, are shown in Figs. 1.9—1.11. The peaks are much smaller 
than those for the thinner crystal, indicating a strong depth dependence. 
Once again, we may estimate the thickness corresponding to a reduction by 
lie, assuming exponential attenuation. In this case it turns out to be ~ 0.4 //m, 
in reasonable agreement with the estimate based on the thin-crystal result. 
The assumption of exponential damping is obviously very crude. The peak 
shapes are now quite different. The dips are relatively more pronounced, 
and the widths are narrower, especially for the {111} plane, (cf. the discussion 
in Sec. II.7).
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Fig. 1.8: Film exposures of the forward beam for the 0.2 0.3 /im sample. The upper series corres
ponds to incidence angles of 0.6°, 0.4°, 0.2°, and 0°, relative to a <(111)> axis, the lower series to 

incidence angles of 0.75°, 0.50°, 0,25°, and 0°, relative to a<(110)> axis.

Fig. 1.9: Scan through {ill} plane for the 
2.8-/zm sample. The error flag on the upper 
right-hand side indicates beam divergence and 
statistical uncertainty of the measurements.

e/eB
Fig. 1.10: Scan through {110} plane for the 
2.8-^m sample. The error flag on the upper 
right-hand side indicates beam divergence and 
statistical uncertainty of the measurements. 
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Fig. 1.11: Scan through {100} plane for the 
2.8-/zm sample. The error flag on the upper 
right-hand side indicates beam divergence and 
statistical uncertainty of the measurements.

Scans through the (111) and <110> axes are shown in Figs. 1.12 and 1.13. 
The peak heights are strongly reduced, and a lot of fine structure has devel
oped. An angular width is difficult to define, but it is obvious that the peaks 
are much broader than for the thinner crystal. No attempt has been made to 
check the suggested conservation of the peak volume11-12. To calculate this, 
it would have been necessary to assume azimuthal symmetry of the peak 
which, for the present measurements, would have been altogether too bold. 
The decrease in peak height is certainly to some extent counteracted by a 
broadening of the peak. This is qualitatively different from the planar case, 
which can be related to the fact that at least from classical estimates, the 
compensation of the peak for planes is concentrated in a narrow, negative 
shoulder, whereas for an axis the compensation is shallow and stretches out 
to angles of order Za/d. In the present cases, 2a/d so 4°.

Film exposures of the transmitted beam are shown in Fig. 1.14 for in
cidence parallel to the two axes (111) and <110) and the three planes {100}, 
{110}, and {111}. The quality of the pictures is very poor compared to the 
beautiful Kikuchi patterns obtainable in electron microscopy, where a 
wealth of lines are resolved33. It does, however, suffice to demonstrate two 
qualitative features: (i) In contrast to Fig. 1.5, the angular distribution of the 
electrons after their passage through a 2.8-^m crystal is determined by mul
tiple (inelastic) scattering, (ii) In analogy to the star patterns observed for
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Fig. 1.12: Scan through Oll)> axis for the 
2.8-^m sample. The error flag on the upper 
right-hand side indicates beam divergence and 
statistical uncertainty of the measurements.

TILT ANGLE (DEG)

Fig. 1.13: Scan through <110> axis for the 
2.8-/zm sample. The error flag on the upper 
right-hand side indicates beam divergence and 
statistical uncertainty of the measurements.

protons transmitted through thin single crystals27, there are minima in the 
intensity at angles associated with a high large-angle scattering yield and, 
conversely, there are maxima at angles associated with a low yield.

Fig. 1.14: Film exposures of the beam transmitted through the 2.8 pm crystal. The upper two 
exposures correspond to beam incidence parallel to a<lll}> axis and a<(110)> axis. The lower three 
exposures correspond to incidence along {100}, {110}, and {111} planes. The small intense spot 

visible in all exposure is due to x rays produced in the gold scattering foil.
Mat.Fys.Medd.Dan.Vid.Selsk. 39, no. 10. 2



II. Wave-Mechanical Description

The calculations leading to the theoretical curves in some of the pre
ceding figures (1.2-1.4 and 1.7) are based upon the dynamical theory of 
electron diffraction14. Similar calculation have been published by several 
authors13- 18~21. A brief description was also given in connection with the 
measurements on positron channeling8-9. The following presentation is 
intended to serve as a basis for the discussion of correspondence in the fol
lowing chapter and therefore emphasizes the analogy with the classical de
scription of directional effects5 and uses the notation belonging to that 
description. This is in accordance with the quantal treatment by Lervig 
et al.10, and we shall at first follow their development and discuss the deriva
tion of the two-dimensional wave equation from the three-dimensional 
Klein-Gordon equation. In this context, the ‘many-beam’ formulation of 
the dynamical theory of electron diffraction then appears as an approxim
ation procedure for solving by Fourier expansion the equation of motion in 
the continuum approximation.

II. 1. Basic wave equation

First, we derive the basic wave equation for the transverse motion, 
following the procedure of Lervig et al. Suppose the interaction between 
particle and lattice can be described by a potential,

V(7i) - V'0.0 (II.1)
i

where R = (x, y, z) is the position of the particle and f = (x, y), while the 
Ri’s are atomic positions and Va the atomic potential. The z axis is parallel 
to an axis or plane, and the particle is assumed to move nearly parallel to 
it. Since we are concerned with particles at relativistic velocities, we base the 
discussion on the Klein-Gordon equation for a particle of total energy E 
and rest mass Mo,
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{(/ic)M5 + [(E - V(z,f))2 - Ä/0M W) = 0. (II.2)

By describing the interaction with the crystal by a potential (Eq. (II. 1)) and 
disregarding the degrees of freedom belonging to atoms, we have at first 
neglected inelastic scattering by electrons and phonons, which leads to 
incoherence of the particle wave function. Furthermore, when the description 
is based upon the Klein-Gordon equation rather than the Dirac equation, 
spin-dependent terms in the Hamiltonian are neglected.

The incident particle may be represented by a plane wave,

V>0(7?) = e^-R, E2 = (hc)2F + ^c4. (II.3)

Since the scattering at high particle energies is strongly forward-peaked, the 
interaction with the lattice only leads to transfer of rather small momenta in 
the x and y directions, the momentum in the z dirsction being approximately 
conserved. The motion may therefore be separated into a transverse motion 
in the x—y plane and a longitudinal motion in the z direction with constant 
velocity vz ™ v = lik/M, where M is the relativistic mass, M = E/c2. For the 
transverse motion it is then natural to introduce time, t = z/v, as a para
meter. The wave function is written as

ip(IV) = eikz • u(z,r). (II.4)

When this is inserted into Eq. (II.2) and we neglect a term V2 compared 
to 2EV and d2/dz2 compared to 2kd/dz, corresponding to scattering by small 
angles only, an equation of a type of a time-dependent, non-relativistic 
Schrôdinger equation for the transverse motion is obtained,

—u(tf) =at
> (II.5)

For a discussion of the corrections to the approximations leading to Eq.
(II.5), the reader is referred to Lervig et al.10.

II.2. Continuum approximation

Let the crystal surface correspond to z = vt = 0. For t < 0, the potential 
is zero, and according to Eqs. (II.3) and (II.4), the transverse wave function 
is then

2*
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u(f,f) = exp{ik-R- ikz} ~ exp{iÄ’1-f — iE^t/h.}

Ei ~ - E~ I(AC)2^ + jU°2c4)1/2

Å = (Å^.Å-0 = (4,, *,,*,)•

(II.6)

At time t = 0, the potential changes suddenly. In the axial case, it is for 
t > 0 a periodic function of t, with period r = d/v, where d is the spacing of 
atoms in the strings. In the continuum approximation, this time-dependent 
potential is replaced by its time average,

1 rt+T
V(f) = - V(t,f)dt, t>0.

J t
(II.7A)

The question of the validity of this approximation was studied in detail by 
Lervig et al. Also in the classical treatment of directional effects, this question 
is crucial. For the axial case, the accuracy of the continuum description 
may be assessed by the more accurate halfway-plane treatment5’ 10. It turns 
out that the continuum picture is obtained in the limit of high particle velo
cities where the time interval r between collisions becomes short.

In the planar case, the continuum approximation is obtained by aver
aging the potential along both the z axis (‘time average’) and the transverse 
coordinate y parallel to the plane,

V(x) = — f dyd(yt')V(t,r'). (II.7B)
J A

The accuracy of this approximation has not been studied by a systematic 
approximation procedure like the halfway-plane treatment of the axial case. 
In the classical description5, the continuum approximation was seen to break 
down at distances from a plane of order a, the Thomas-Fermi screening 
distance, even for very large particle velocities.

In the dynamical theory of electron diffraction, the continuum approx
imation corresponds to a Fourier expansion of the lattice potential in one or 
two dimensions, for the planar and axial case, respectively. It is argued14 
that for high-energy electrons incident at a small angle to a plane (or an 
axis), only reciprocal lattice points on a line (or a plane) perpendicular to 
the plane (or axis) are close enough to the Ewald sphere for the correspond
ing reflections to be appreciably excited. The important question remains, 
whether scattering processes leading to nonconservation of transverse energy 
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are weak enough to be treated as a perturbation. Such processes may be 
either inelastic scattering, or elastic scattering corresponding to reciprocal 
lattice points off the line (or plane) perpendicular to the plane (or axis). 
For the axial case, the importance of the latter type was assessed in Ref. 10.

We shall base our discussion of correspondence in the following chapter 
on the continuum picture, mainly because this leads to rather simple results 
in both classical and quantal treatments. In so far as the main difference 
between the results consists of fine structure due to wave interference, the 
difference may be reduced by inelastic scattering leading to incoherence of the 
wavefunction.

II.3. Solution of wave equation

In order to solve Eq. (II.5) for t > 0, we consider the stationary wave 
equation corresponding to well-defined transverse energy E±. For simplicity, 
we restrict ourselves to the planar case,

h2 d2
2Mdx2

+ V(æ) u?(x) = E^if(x),

u\t,x) = u\x)e

(II.8)

where z?(x) is the eigenfunction belonging to the eigenvalue E^. The Hamil
tonian is invariant under transformations x .r + ndp, where n is an integer 
and, consequently, if(x) can be written as a Bloch wave,

i/(æ) = eiÄTW(x), (II.9)

where a?(x) is a periodic function, tt?(x + ndp) = (d(x). In order to find 
solutions (II.9) to (II.8), we expand the potential as well as the wave func
tion in a Fourier series,

V(æ)=2V7le^^ (II.10)
n

-2C!mé'tx (II.11)
m

where g is the length of the reciprocal lattice vector corresponding to the 
distance dp between neighbouring planes, g = ‘Znfdp.

If we insert (II.10) and (II.11) in (II.8), and identify terms with the 
same exponential factor, we obtain for the coefficients Cjn

^.(k1 + ngyCi.+2C‘mVn-m - E{C>n.
(11-12)
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This system of equations leads to approximate eigenfunctions when only 
a finite number of terms in (II.10) and (II.11) are included. In the termi
nology of diffraction therory, the term in (II.11) with n = 0 is the primary 
beam, whereas terms with n #= 0 correspond to diffracted beams. A cal
culation including N terms in the expansions (II.10) and (II.11) is therefore 
denoted an iV-beam calculation. The system of equations (11.12) then 
reduces to an eigenvalue problem for an N x N matrix Ä given by

Anm ~ Vn — m> Il III

h* x (11.13)
Ann = — (À-± + n^)2 +V°. ;

In an N-beam calculation there are for fixed k± N eigenvalues correspond
ing to N orthogonal wave functions t?(æ) given by (II.9) and (II.11). The 
dependence of the exact eigenvalues and eigenfunctions on Àq is periodic 
with period g. For the solutions of a truncated matrix (11.13), this periodicity 
will only hold approximately within a limited range of kL values. In practice, 
the number of beams is chosen to be large enough for this range to comprise 
the interesting range of incidence angles.

77.4. Scattering yield

At first we estimate the atomic scattering yield relative to the random 
case, corresponding to an eigenfunction u^(æ). For large-angle scattering, the 
contributions from different atoms are incoherent due to the recoil. Clas
sically large-angle scattering of energetic particles corresponds to collisions 
with very small impact parameter, and the yield will therefore be proportional 
to the particle flux at atomic positions. The classical picture applies when 
the quantity x, defined in Eq. (1.2), is large compared to unity. In the opposite 
limit of small x values, the scattering by a single atom may be calculated 
in the Born approximation. The yield is then proportional to the square of 
the matrix element <iF| Va| id), where id and ul are the initial and final states 
of the projectile and Va is the atomic potential. For large-angle-scattering 
corresponding to a transfer of a large transverse momentum hAk, the matrix 
element receives its major contribution from distances < 1/Ak from the 
the center of the atom. If the initial wave function does not vary significantly 
over distances ~ 1/Ak, the yield will then also in this limit be proportional to 
the intensity | id |2 at the position of the atom. This result is therefore ob
tained as a direct consequence of our basic assumption of predominance of 
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small-angle scattering, which implies that in the matrix (Eq. (11.13)), only 
Fourier components corresponding to ng « Ak need be included.

If the intensity distribution | ul(re) |2 varies only little over a distance 
~ Q, the R.M.S. vibrational amplitude perpendicular to the plane, the yield 

is given approximately by the intensity at the equilibrium position,

_ i„j(o)p _ geo2- (U.K)
n

Here, and in the following, we assume the coefficients CJn to be real, which 
may always be achieved if the crystal has reflection symmetry. Also, for 
simplicity, we have assumed that rr = 0 corresponds to the position of the 
atomic plane. The two assumptions are not always compatible as, e.g., 
they are not for a {111} plane in a diamond lattice (cf. Fig. 1.2 and the 
corresponding comment in the text). In such cases, the appropriate phase 
factor must be included in Eq. (11.14), which is modified to

%, = 2 (II.14a)
n, m

when the atomic plane is at x = .r0.
As in the classical description29, the most important correction for thermal 

vibrations is the modification of the yield due to displacements of the 
scattering centers from the plane. When the intensity is averaged over a 
Gaussian distribution of displacements, Eq. (11.14) is modified into

- 2 (11.15)
m, n

where Dnm are factors of Debye-Waller type,

Dnm = exp{-|(n-m)2(/2e2}. (11.16)

A less significant effect of thermal vibrations is the modification of the 
lattice potential. Incoherence due to atomic recoil reduces the coherent 
scattering, and this may be taken into account by multiplying the Fourier 
components of the potential by a Debye-Waller factor,

V„ -> VnDno, (11.17)

where Dno is given by Eq. (11.16). The corresponding reduction of large 
Fourier components may alternatively be interpreted as being due to the 
smearing of the planar potential which results from a convolution with the 
Gaussian probability distribution for the position of atoms relative to the 
plane.
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The corrections (11.15) and (11.17) only become important when the 
wave function contains Fourier components corresponding to transverse 
wave vectors ng ~ l/ø. Since (ffo ~ 30 this will only be the case when at 
least 5-10 beams have to be included in the calculation.

II.5. Surface transmission

The wave function for t > 0 may be expanded in terms of eigenfunctions,

j 1 n

where we have utilized that matching at the surface (f = 0) to the incoming 
plane wave requires all eigenfunctions in Eq. (11.18) to correspond to the 
value of Åq determined by Eq. (II.6). Also the coefficients are determined 
by this matching, and we obtain

(11.19)
i

If the eigenfunctions are normalized,

n
(11.20)

it is easily seen that
(11.21)

Neglecting at first thermal vibrations, we then obtain for the yield P of 
large-angle scattering, combining (11.14) with (11.21),

(11.22)

If thermal vibrations are taken into account, Eq. (11.14) is replaced by 
(11.15), and we obtain

j m,n
(11.23)

In Eqs. (11.22) and (11.23) we have added the contribution from different 
eigenfunctions incoherently. The results therefore apply to measurements 
which are averages over a thickness large enough to correspond to large 
variations of the relative phase of different eigenfunctions. This assumption 
of random relative phases is analogous to the assumption of statistical equi
librium in the classical treatment.
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The yield of large-angle scattering is determined by the spatial intensity 
distribution of the channeled particles. By a transmission measurement of 
the intensity of different Bragg spots, one may determine the distribution in 
momentum space34. The corresponding formulae may easily be derived, 
but we shall instead turn to the problem of incoherent scattering which, in 
the theory of electron diffraction, plays a role very similar to that of de
channeling by multiple scattering in the classical theory of channeling.

II.6. Incoherent scattering

An order-of-magnitude estimate of the total cross section for scattering 
by atoms in a random medium was given in the previous chapter (Eq. 
(1.1)). For a wave function with high intensity at the atomic sites, there will 
be a strong increase in scattering. On the other hand, for small scattering 
angles, the intensity is mainly concentrated in the coherent Bragg peaks. A 
cursory estimate of the corresponding reduction of in coherent scattering 
may be obtained from the scattering law applied in the previous estimates,

(11.24)

Here, 0O is given by the ratio of the electron wavelength X to the screening 
radius a, 0o = 2/a. Since the incoherent scattering is proportional to a factor 
[1 - exp(— @202/Â2)], a rough estimate of the incoherent fraction is

(11.25)

In silicon this estimate leads to a rather small incoherent fraction, 
oj 1/6. In view of the rough approximations made in the calculation, this 
number should be considered only as an indication of the importance of 
corrections for coherent scattering to the inelastic scattering cross section. If 
the atomic scattering is strongly reduced, inelastic scattering by electrons may 
play a significant role especially for low Z2. It should be noted, however, 
that the enhancement of incoherent scattering (anomalous absorption) 
corresponding to the increase in large angle scattering yield will be much 
stronger for thermal scattering than for electronic scattering.

A considerable amount of work has been devoted to the problem of 
estimating inelastic scattering in connection with electron microscopy. 
Recently, a review was given by Howie and Stern35, which also may be 
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consulted for further references. Usually, inelastic scattering is taken into 
account by adding an imaginary part to the potential. Such a simple treatment 
will probably not suffice in the present connection. Since the inelastically 
scattered electrons also contribute to the large-angle scattering yield, we are 
concerned not only with the effect of inelastic scattering on the initial, 
coherent wave function — absorption — but also with the properties of the 
final stales. Thus it may be complicated to introduce inelastic scattering even 
in the comparatively simple two-beam case17. As a first approximation, the 
final states may be assumed to be plane waves36. For the thermal scattering, 
which involves rather large momentum transfers, this assumption may not 
be too bad. Since, however, for scattering by electrons, the cross section is 
strongly peaked at small momentum transfers, the wavefunction may not 
change its symmetry even after several plasmon excitations14’35.

In the axial case, the problem of incoherent scattering is particularly 
severe. The strong potential minimum should lead to fairly localized states 
and a large peak in scattering yield. Such states will be highly unstable, and 
the incoherent scattering cannot be treated as a small perturbation. A treat
ment in terms of statistical concepts may then be more appropriate11- 37.

11.7. Numerical evaluation and comparison to experiment

When only a small number of Fourier components (beams) are included, 
the many-beam formalism lends itself readily to numerical evaluation. 
Planar peaks in scattering yield for 700-keV electrons along {111} and {110} 
planes in silicon are shown in Figs. II. 1 and II.2. A fairly rapid convergence 
with increasing number of beams is indicated. The number of beams 
necessary in such a calculation depends on the strength of the planar potential 
and the relativistic particle mass. In the present case, 7-9 beams are sufficient 
for the most closely packed plane, the {111} plane, whereas for the weaker 
{110} and {100} planes, only 5-7 and 3-5 beams, respectively, are needed.

The relative excitation of different Bragg-reflected beams can be directly 
observed in the photographic exposures of the transmitted beam (Fig. 1.5). 
For the {111} plane, both second - and third-order reflections are quite 
important, and of the order of five beams are strongly excited. It may be 
noted that due to the already mentioned split of the {111} plane in a diamond
type lattice, the second-order Fourier component of the {111} planar poten
tial vanishes. Thus the second-order beam can only be excited indirectly, 
and the very strong excitation indicated in Fig. 1.5 shows the importance of
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ö/eB
Fig. II.l : Many-beam calculations of the {111} 
peak for 0.7-MeV e*  on Si, including 3, 5, 7, 

and 9 beams, respectively (static lattice).

e/eB
Fig. II.2: Many-beam’calculations of the {110} 
peak for 0.7-MeV e- on Si, including 3, 5, and 

7 beams, respectively (static lattice).

dynamical effects. The two exposures for the {110} plane indicate that for 
this somewhat weaker plane, fewer beams are excited.

In the axial cases, a much larger number of beams are excited simulata- 
eously, as may be appreciated by looking at the Bragg spot patterns in Fig. 
1.8. For the <111> axis, the number of spots is still fairly small, and a cal
culation analogous to those for planar cases was therefore attempted (see 
Fig. 1.7). The convergence with number of beams is illustrated in Fig. II.3. 
For the <110> axis, the spot pattern in Fig. 1.8 contains many, fairly weak,

i----------- 1----------- ------------ 1----------- r

0 ----------- I--------------- 1-------------- 1_________ _____ I_____________1_________ L_
0 0.5 1 1.5 0 0.5 1 1.5

Fig. II.3: Convergence of axial many-beam 
calculations for 0.7-MeV e- on Si. The number 
of beams included is indicated in the figure. 
For the <111) axis, the equivalent number of 
beams for a {110} planar calculation is given 
in parentheses. In contrast to the calculations 
shown in the previous figures, the most 
important reflections were selected independ
ently for each angle of incidence. Incoherent 
scattering is neglected, but other effects of 
thermal vibrations are included (cf. Eqs. 
(11.15) and 11.17)). The values of the character
istic angle ip1 for classical channeling are 0.75° 
and 0.92° for the <111) axis and the <110) 
axis, respectively.
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Fig. II.4 : Axial peak in large-angle scattering 
yield for 0.7-MeV e", derived from a 49-beam 
calculation (cf. Fig. 11.3). The influence of 
incoherent scattering has been estimated by 
including an imaginary component in the 
potential and assuming scattering into plane
wave states. The magnitude of the imaginary 
Fourier components of the potential has been 
evaluated from an approximation to the results 
given in Ref. 38. The peak derived from this 
calculation is compared to that obtained 
without absorption, multiplied by 0.5, corres
ponding to the correction for inelastic scatter
ing applied in Figs. 1.6 and 1.7 (dashed curve).

TILT ANGLE

reflections. This may be related to the complicated transverse arrangement 
of (110) strings and explain the apparent lack of convergence in the many
beam calculations for this case (see Fig. II.3). Also, the <110/*  axis is some
what stronger than the (111) axis, and the experimental results were there
fore compared (in Fig. 1.6) to a classical calculation. It is clear that for a 
strong, narrow potential, two-dimensional Fourier expansion is basically a 
very inefficient method.

Fig. II.5: 20-beam planar calculation 
for e~ on Si. Effects of thermal vi
bration are included according to Eqs. 
(11.15) and (11.17), and the influence 
of incoherent scattering has been 
estimated as described for the pre
vious figure.

e/eB
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As mentioned in the previous section, inelastic scattering is normally in 
electron microscopy taken into account by adding an imaginary component 
to the potential, and this treatment may be applied to measurements of large- 
angle scattering if the final states are assumed to be plane waves. Examples 
of results from such a procedure are given in Figs. II.4 and II.5 for the 
<111) axis and the {111} plane, respectively. For the axis, the calculation 
supports the simple estimate of a reduction by a factor of two, which was 
applied in Figs. 1.6 and 1.7. Also for the plane, the result for the thinner 
crystal is in fair agreement with measurement, but for the thicker crystal, 
the calculation does not lead to the narrowing of the peak observed experi
mentally (Fig. 1.9). It would seem that measurements of the type described 
here could serve as a useful tool to test the description of inelastic scattering.

The main conclusion of the comparison between calculations and experi
ments is, however, that for small depths, the dynamical theory of electron 
diffraction yields results in good agreement with experiments, at least for 
planes and weaker axes. A similar conclusion was reached for experiments 
with positrons8’9, and we may therefore in the following investigate the 
relation to channeling of heavy particles by studying the relationship of this 
theoretical description with classical channeling theory.



III. Correspondence

III.l. General considerations

The main objective of this investigation of electron and positron chan
neling has been to study the limits for applicability of classical mechanics 
in the description of channeling phenomena for light particles, and in 
particular the relation between the theory of electron diffraction, as formul
ated in Chapter II, and classical channeling theory. In the papers by Lind- 
hard5 and Lervig et al.10, the validity of classical orbital pictures in the 
description of collisions with an isolated string was studied in detail with 
emphasis on the case of heavy particles (protons, a paticles, etc.). For this 
case it was concluded that in the limit of high particle velocities, a collision 
with a string of atoms remains classical although classical mechanics does 
not apply to scattering by a single atom since the quantity x, defined in Eq. 
(1.2), becomes small compared to unity.

For channeling of light particles (positrons and electrons), an analysis of 
the interaction with the lattice in terms of scattering of a wave packet by 
isolated strings or planes may not be appropriate, as the requirements of 
localization in space and angular spread smaller than a characteristic angle, 
which for axial channeling is of order10

(III.l)

may be mutually exclusive.
Decisive for this question is the magnitude of the number of bound 

states in the transverse potential minimum. Semiclassically this number may 
be obtained from the available phase space for transverse energy below the 
potential barrier. If there are no bound states the scattering is determined 
by simultaneous interaction with many strings or planes, and no similarity 
with classical results can be expected. In the limit of many bound states, on 
the other hand, the classical picture is approached.
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In the case of axial channeling, positively charged particles with trans
verse energy below the barrier for penetration through strings are not bound 
to one channel but may move freely between strings except at very low 
transverse energy (‘proper channeling’). Still, the number of states per unit 
cell in the transverse plane (or per string), with transverse energy below the 
barrier for penetration into strings, is an important quantity. Qualitatively 
it may be seen from the fact that many states per unit cell are required to 
form a wave packet which is well localized within this area. More directly, it 
follows from the quantal treatment in Ch. II. The stationary wave equation 
(two-dimensional analogue of Eq. (II.8)) may be reduced to one unit cell 
with periodic boundary conditions, and the conclusions reached in the 
following concerning the behaviour of the solutions of this equation may 
therefore be expected also to apply to the axial case for positive particles, 
with the definition given above for ‘the number of bound states’.

At this point it may be appropriate to discuss the special quantal pheno
mena caused by the lattice periodicity. Indeed the strong diffraction pheno
mena observed for electrons and positrons constitute the most striking 
deviation from classical behaviour. The interference due to transverse 
periodicity with period dp may be described as a quantization of transverse 
momentum transfers in bits of ôpt = Znhjdp, corresponding to an angular 
deflection of twice the Bragg angle. This quantization was explicitly dis
regarded by Lervig et al. on the ground that for particles heavy compared to 
the electron, ôp± is very small. In point of fact, for = pyj^ we have10 

0 for M » m0, (III.2)

where M and Z± are the mass and charge of the incident particles.
Should we not then, as the essential criterion for classical behaviour, 

require that the transverse momentum quantum ôp± be small compared to 
the transverse momentum corresponding to the potential barier Eb, pL = 
= (2MEb)1/2? Although this is a necessary condition, it is not sufficient. 
Also the width of the potential minimum is important since, together with 
the barrier height, it determines the number of bound states.

The interference structure may be smeared by incoherent scattering 
or poor collimation. This, however, only leads to classical results if the 
phase-space criterion is fulfilled such that the quantal description leads to 
a classical envelope with fine structure due to diffraction. In this transition 
region, deviations from classical results due to tunneling may also be expected. 
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Channeled positive particles are prevented from penetrating into the center 
of atoms by the transverse potential barrier. The probability of close en
counters with atoms is thereby strongly reduced for incidence parallel to an 
axis or plane, and the magnitude of this reduction may be sensitive to the 
probability of tunneling into the classically forbidden regions. Cursory 
estimates of tunneling probabilities for strings and planes, based upon the 
WKB approximation, were given in Ref. 10.

We may conclude these general remarks by considering some charac
teristic lengths, the relative magnitude of which governs the approach to
wards the classical picture of channeling. The transverse wavelength 2&, 
which corresponds to a transverse kinetic energy equal to the potential bar
rier Eb, is given by 2tt/î/(2ME'&)1/2, where M is the relativistic mass of the 
particle. This length may first be compared to the width of the potential 
minimum which, for electrons, is a few times the Thomas-Fermi screening 
distance a and for positrons is of the order of d, the lattice spacing. When 
is small compared to the width, the phase space is large, there will be many 
bound states, and the quantization of transverse energy may be disregarded.

Second, the importance of the quantization of transverse momentum de
pends on the relative magnitude of 2& and the characteristic lengths for lattice 
periodicity, which again is of order d. If the phase-space criterion is ful
filled, will be small compared to d, and we may expect interference due 
to periodicity to lead to fine structure only.

Third, penetration into potential barriers is small if the width of the 
barrier is large compared to 2^. For positive particles, the barrier widths 
are of order a or a few times a. Tunneling may therefore lead to important 
modifications of classical results, even if the phase space is relatively large. 
In Ref. 8 it was concluded, however, that the influence of tunneling is 
strongly reduced by the smearing of the distribution of atoms, due to thermal 
vibrations.

III.2. Analogy between quantal and classical descriptions

In the following we shall try to describe in some detail how the quantal 
description of channeling approaches the classical description and illustrate 
the importance of the phase-space criterion. In this connection it is important 
to specify the type of measurement we are considering. We shall be con
cerned only with predictions of the dependence on incidence direction of the 
yield of a close-encounter process such as large-angle scattering or inner- 
shell excitation. This simplifies the problem considerably since we need not 
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consider in detail the validity of classical orbital pictures in describing particle 
trajectories25 but only the ability of classical mechanics to predict the 
distribution of particles in the transverse direction or plane. A quantal 
treatment was discussed in the previous chapter and for the classical 
description, we may refer to Lindhard’s original treatment5. Numerical 
estimates based upon the two formulations are compared in Ch. IV. In the 
Appendix, an example is given of an analytical calculation based upon the 
classical description.

'fhe physical situation we are concerned with is an external beam of 
particles incident on a single crystal at an angle ip to a major plane (or 
axis), and we ask for the probability PÇip') for particles to come close to the 
center of crystal atoms, as manifested in the yield of a close-encounter 
reaction. Many similarities are apparent between the classical and the quan
tal treatments of this problem. Owing to the predominance of forward scat
tering, the motion of the particles may be separated into a longitudinal mo
tion with nearly constant velocity and a transverse component, which may 
be described as motion in an averaged potential with approximate conser
vation of the transverse energy (‘continuum approximation’). The pro
bability P(ip) is then determined in two steps:

First, the probability nÇE^) for a particle with transverse energy E± to 
have a close encounter with an atom is calculated. In the classical treatment, 
this involves finding the probability distribution in transverse space as a 
function of E±, based on statistical arguments. In the quantal treatment, E± 
is quantized. The eigenfunction fP’(.r) belonging to an eigenvalue E^ may be 
calculated from Eqs. (II.8), (II.9), (II.11), and (11.12). The probability 
density in transverse space is given by the square of this eigenfunction. In 
both cases, the reaction yield is assumed to be proportional to the density al 
atomic positions.

Second, the population of transverse-energy levels is determined by 
surface transmission. Classically, a particle hitting the crystal at a distance x 
from a plane acquires a potential energy V(.r), leading to a total transverse 
energy

E± = Exp2+ V(x). (111.3)

Since the intensity of the beam is uniform over the crystal surface, the 
distribution in transverse energy is then given by

W(E\ a - Eip2 - V (.r)) = 2 
i

dV -i

dx X = Xi

(III.4)
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where the æ/s are solutions to Eq. (111.3). Formulae analogous to (III.3) 
and (III.4) hold for the axial case.

In the wave-mechanical formulation, the population of energy levels is 
determined by a matching of the total wave function al the crystal surface to 
the incident plane wave, which yields the coefficients (Eq. (11.21)) of dif
ferent eigenfunctions. In the expressions for the total probablilitv density in 
the transverse plane, interference between different eigenfunctions is neglect
ed. In the planar case, this corresponds to the assumption of statistical 
equilibrium in the classical calculation and should be valid for not too 
small thicknesses. Problems related to the assumption of statistical equili
brium for axial channeling are discussed in Ch. IV and, in more detail, in 
the Appendix. Deviations from equilibrium close to the surface have been 
studied extensively for heavy-particle channeling27 and recently also for 
electron channeling37’ 39.

In the following we shall analyze both of these steps in detail for the one
dimensional case. In the quantal treatment in Ch. II, the problem of determin
ing eigenfunctions for the transverse Hamiltonian was reduced to solving the 
Schrödinger equation (II.8) in a finite interval [0,c/p], with periodic bound
ary conditions according to Eq. (II.9). In order to gain insight into the prop
erties of such solutions, we consider a simpler analogous problem where the 
particle is confined by infinite potential walls. For the general qualitative 
conclusions concerning the importance of the magnitude of quantum num
bers, the difference in boundary conditions should not be of any importance 
and, furthermore, the boundary conditions are for strongly bound states 
determined by the local potential minimum and not by periodicity (cf. also 
Sec. IV.2).

111.3. Harmonic oscillator

First, we treat the familiar example of a harmonic oscillator. For many 
physical problems, this is a basic example, which may be solved by analytical 
methods. In fact, the spatial probability density for a particle bound in a 
harmonic potential is used as a standard textbook illustration of correspond
ence with classical mechanics in the limit of large quantum numbers40. 
According to the general discussion above, evaluation of this density is the 
first task to be performed.

Spatial density. With the potential V(x) =the eigenvalue 
equation becomes
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Fig. III.l : Spatial density for harmonic-oscillator eigenfunctions corresponding to n = 4 and 
n =-- 12, respectively. The classical turning points are indicated by dot-and-dash lines, and the 
classical spatial probability (Eq. (III.9)) is given by the smooth solid curve. The oscillating solid 
curve corresponds to the exact distribution |uM(x)|2 (Eq. (III.7)) and the dashed curve to the 

density obtained from the WKB approximation (Eq. (III.22)).

h2 Q2
---------+ Wx2
2A/d.r2 2

u(æ) = Eii(x). (III.5)

Here, and in the following, the transverse energy is denoted simply by E. 
This equation has the well-known solutions

En = ha>(n + ±'), (III.6)
and

<zn(.r) = NnHn(ax)e-1/2atx\ (III.7)

where a2 = Mco/h, Hn is the n’th Hermite polynomial, and Nn is a normal
ization constant,

Nn = (111.8)

The probability density, | u(x) |2, is in Fig. III.l compared to the classical 
distribution,

g(æ)
A/m2)1/2----- (E - 4-A/co2x2)-1/2) 
2tz2 / V 2 7 (III.9)

for two values of n. For moderately high n, the distributions are very similar 
except for the rapid oscillations of the quantal density.

3*
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Surface transmission. Corresponding to the case where particles are 
incident on a crystal at an angle <p to a major plane, we now ask for the 
population of the harmonic-oscillator eigenstates for y)(x, t = 0) = eikx, 
where hk denotes the transverse momentum, related to the total momentum 
p by lik = pep. The classical result is

V = E-ft2k2/(2M)
(111.10)

In order to find the quantal distribution, we have to evaluate the matrix 
element

<urø I eikx) dx Hn (ax) e~1/2 ^x2eikx. (III.11)

This integral may be evaluated by repeated partial integration when the 
following represention of the Hermite polynomial is used,

Hn(x) = (- l)«e* ---- e~x, (III.12)
dxn

and the result is

<iin\eikx> = -Nn^2n(- i)n e~kt'<2x"> Hn(k/a). (III.13) 
a

Since Eq. (III.11) is essentially the momentum representation of the n’th 
state, this result, except for a phase factor, also follows directly from the 

d
svmmelry between x and - in the Hamiltonian.

dx
The population of the n’th energy level is given by the square of this 

matrix element,

p(eo - HWr (ni.U)

When this expression is divided by the spacing of levels, hen, the relation 
to the classical energy distribution (III. 10) is the same as the relation be
tween the quantal and classical spatial densities except for the fact that the 
expressions are now compared as functions of E (cf. Fig. III.3).

Since the main purpose of these considerations is to illustrate the cor
respondence qualitatively, we shall only for a special case prove that the 
quantal result approaches the classical one in the limit of large quantum 
numbers. Consider the energy distribution (III. 14) for k = 0, corresponding
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Fig. 111.2: Comparison of quantal(Eq. 
(III.5)) and classical (Eq. (III.10)) 
energy distributions for k = 0, cor
responding to incidence parallel to a 
plane. The two distributions have 
been multiplied by l/2(Mco27tø)1/2. 
Here n denotes the level number, i.e., 
En = (n+l/2)7ta>, and the staircase 
distribution gives the population for 

n even.

for the channeling case to zero angle of incidence with a plane. Only states 
with even parity are then populated, and we may compare the classical den
sity (Eq. (III.10)) to P(£,2n)/(2/ico). Using the relation H2n(0) = (- l)»(2n)!/n! 
we obtain

P(E2„)/(2Åco)
1 AtV/2 

(71 co)1/2 ■ y 2 j
_(2n)!_
22«(n!)2'

(III.15)

For large n, we may evaluate the factorials by Stirling’s formula,

and obtain

oo

(III.16)

P(£,2n)/(2Aco)
1

(2nhco)V2'
(III.17)

This result is essentially identical to Eq. (III. 10) for k = 0. The distributions 
(III.10) and (III.15) are compared in Fig. III.2.

111.4. WKB approximation

The general approach to the classical description for large quantum 
numbers may be seen more directly in the WKB approximation. This 
semiclassical description oilers a convenient stepping stone from a quantal 
formulation to the classical treatment (cf. also Ref. 25).

Spatial density. A stationary solution to the Schrödinger equation with a 
potential V(æ) may be written

tp(x,f) = C exp{ i(s(x) - Ef)/h}, (III.18)
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where the phase function .s(.r) satisfies

-f-’ï271/\öx y
- [E - V(.r)]

ih d2
2Mdx2

0. (III.19)

The WKB approximation obtains the first two terms of a formal expan
sion of s in powers of h. In classically allowed regions, (E > V(.r)), the 
general solution in this approximation is40

u£(.r) = I I +AÅ(.'r)-1/2exp
(III.20)

where we have introduced the local wave vector

Â’(æ) = |(2M(E - E(.r)))1/2. 
n

(III.21)

Apart from oscillations due to interference between the two amplitudes 
corresponding to opposite directions of the particle velocity, we have |zz(.r)|2 a 
a (E - V(x))-1/2 as for the classical spatial distribution (cf. Eq. (III.9)). 
The condition for the validity of the WKB approximation is that the fractional 
change in wavelength be small over a distance of one wavelength. Except 
for the regions close to the classical turning points (V(æ) ~ E), this is in the 
case of a potential minimum equivalent to a demand for many nodes in the 
wave function or a large quantum number n.

Surface transmission. Consider for simplicity a symmetric potential 
V(.r) = V(- .r) increasing monotonically to infinity for x -> » with V (x) 0
for x 0. When the solution (Eq. (III.20)) for V < E is matched to the 
WKB solutions in the classically forbidden regions (V > E), the wave 
function becomes40

uE(.r) = Aft (x)-1/2 cos H*  kfx'ydx' (III.22)

Matching to the solution for V > E at the turning points, x = ± a, leads to 
quantization of the energy, determined by40

k(x)dx = (n + ti, n = 0,1,2, . . . (111.23)
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In order to determine the population of eigenstates corresponding to an 
initial wave function f = 0) = e** 0*,  we consider again the matrix 
element

<uE(æ)|ea#a;> = aJä (æ)-1/2 cos f J k(x')dx' --^jeikoX dx. (III.24)

This integral we may evaluate by the stationary-phase method. First, the 
wave function u£(.r) may be written as a sum of two amplitudes correspond
ing to opposite directions of the velocity (cf. Eq. (III.20)). A stationary 
phase, determined by

is obtained only for the amplitude corresponding to the velocity direction 
given by the sign of k0. For 0 < k0 < /c(0), Eq. (III.25) is fulfilled for two 
values of x, <r = ± Xk, determined by

k( ± x/d) — k0. (III.26)

The contributions from the two x values are then approximately given by the
expression

x

(III.27)

in which the phase has been expanded to second order around the points 
x = ± xjc. When the result (c > 0) 

exp ( ± zc.r2) dx (III.28)

is applied, the magnitude of the two contributions may be evaluated, and we 
obtain

'2zth / %\
P(E) = |<uÆ(x)|ea’a:>l2 = ^A2cos2H (k(x) - k^dx - - (111.29) 

where the argument of the cosine corresponds to half the relative phase of 
the contributions from x = ±.rfc. As for the harmonic oscillator we obtain 
an energy population which oscillates as a function of energy, and we have 
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now seen that this behaviour is caused by interference between the amplitudes 
corresponding to the two points x = ± xk, at which the velocity of a particle 
with energy E matches the well-defined velocity for f = o, n = hk0/M.

In order to compare with the classical energy population,

W(E)dE = 2V'(xk')-1dE, (III.30)

(III.31)
a

normalization constant A and furthermore divide 
AE between eigenstates. The normalization is de-

we must evaluate the
P(E) by the splitting 
termined by,

1cos2

If the condition for the WKB approximation is fulfilled, the potential varies 
only little over one wavelength, and we have approximately

Â'(.r)_1r/x (111.32)

The quantization of energy is given by Eq. (111.23). At high quantum 
numbers, we may evaluate the splitting AE from

With the definition (III.21) of À (æ), this leads to

(III.33)

(111.34)

Combining Eqs. (III.32) and (III.34) with Eq. (III.29), we obtain

P(E)/AE (4/V\.r*))cos 2^J (k(x) - k0)dx - (III.35)

When averaged over the oscillations, this expression is idential to the classical 
result in Eq. (III.30).

It should be noted that the method of evaluation used here is limited to 
energies somewhat larger than classical minimum energy, E = V(0) + 
+ h2Â2/(2ïU). Also, for large values of E, the method breaks down because 
the stationary points ± xk are too close to the classical turning points, where 
the expression (III.22) for the wave function cannot be applied. In these 
regions, we way instead expand the potential to first order around x = ± a
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Fig. 111.3: Population of levels in 
harmonic oscillator for y(x, t = 0) = 
exp(ifcr), with a value of k corres
ponding to (AAr)2/(2Af) = 4.5 ha>. 
This lower limit for the classical 
energy population is indicated by a 
dot-and-dash line, and the classical 
distribution (Eq.(III.lO)) is given by 
the smooth solid curve. The solid 
staircase distribution corresponds to 
the exact population (Eq. (III.14) 
divided by ha>), while the result 
obtained from the WKB approxim
ation (Eq. (III.35)) is indicated by 
the dashed lines. Normalization and 
notation as for Fig. III.2.

and represent the wave function by an Airy function. For k = 0, a result 
analogous to Eq. (III.35) is then easily obtained, with the cosine replaced 
by 0 or 1 for odd and even parity, respectively.

We shall not go into the details of such estimates since the main purpose 
of this chapter is to provide some general insight into the correspondence 
between classical and quantal results. Such insight is more readily gained 
from analytical treatments of simple examples than from more realistic 
numerical calculations, as presented in Ch. IV. For this purpose, the WKB 
approximation is particularly helpful, yielding basically classical results 
modulated by oscillations due to interference between different amplitudes.

We conclude this chapter by an assessment of the accuracy of the WKB 
approximation for the harmonic oscillator, which was treated exactly in the 
previous section. Figure III.3 shows the population of different energy 
levels for a plane wave with a k value corresponding to (h/c)2/24Z = 4.5hco. 
The smooth curve is the classical energy distribution given by Eq. (111.10), 
while the staircase distributions correspond to the exact quantal result (Eq. 
(III. 14), fully drawn) and the WKB approximation (Eq. (III.35), dashed). 
Only close to the minimum energy do the two distributions differ enough to 
be drawn separately. It should be noted that for the harmonic oscillator, Eq.
(III.23) reproduces the exact energy quantization. For the spatial density 
distribution, shown in Fig. III.l, the accuracy of the WKB approximation is 
similar, and appreciable deviations from the exact results occur only close to 
the classical turning points. For small values of are, the distributions deviate 
by less than one percent.



IV. Applicability of Classical Calculations to Electron and 
Positron Channeling

In this chapter, we first apply the general qualitative results of the previous 
chapter to obtain approximate criteria for the applicability of classical 
concepts to channeling of electrons and positrons from estimates of the 
number of bound states in the transverse continuum potential According to 
Eq. (III.23), this number may be obtained approximately as the available 
phase space divided by Planck’s constant h (or by h2 in two dimensions).

Second, the transition to the classical limit al high quantum numbers 
is studied quantitatively by a comparison of classical results for the direc
tional dependence of the large-angle-scattering yield with results obtained 
from the many-beam description reviewed in Ch. II. The calculations also 
provide a check of tiie formulas for the number of bound states derived from 
semiclassical estimates.

IV.1. Number of bound states

The following estimates correspond closely to those given in previous 
work8-13. Also in the review by Gemmel27, such estimates were given. For 
the planar case, our results are essentially in agreement, apart from a 
trivial mistake by a factor of two in his formulas. For axial channeling of 
negative particles, there is a more important difference in method as well as 
result.

Planes. The planar potential is illustrated in Fig. IV. 1 for positive particles. 
We base the estimates of the phase space upon Lindhard’s standard potent
ial, which for a particle with one positive charge, leads to the planar potential.

V(x) = 2nZ2e2Ndp[(x2 + C2a2y/2 - x\, (IV.1)

where NdP is the density of atoms in the planes, dp being the planar spacing. 
The width of the potential maximum is approximately 3Ca, where a is the 
Thomas-Fermi screening distance and C a potential parameter, C ~ |/3 •
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Fig. IV. 1: Si {110} planar potential 
for positrons. The potential from a 
single plane is represented by the 
dashed curve (Eq. (IV.l)), while the 
solid curve is obtained by adding the 
potential from the neighbouring plane. 
The phase-space estimates are based 
on the latter potential.

The number of bound states in the potential is given by

vp ~ i- (dpC2M(Vmax-V)y/2d.r, 
Tin J o

(IV.2)

where M is the relativistic particle mass.
From a numerical integration of (IV.2), we obtain for negative particles a 

result corresponding approximately to a square-well potential with depth 
V(0) given by Eq. (IV.l), and width ~ 3Ca, 

(IV.3)

where zn0 is the electron rest mass and o0 the Bohr radius, a0 = 0.53 Ä. For 
positive particles, the potential minimum is wider by a factor of dp/(3Ca), 
and Eq. (IV.2) leads to

/ M\1/2
V+V ~ l m I cv.4)

The ratio of these two numbers is approximately

viivp zi13-

Even for strong planes, the estimate (IV.3) leads to a number of bound states 
of the order of unity, v~ ~ 1 for electrons of not too high energy. In contrast, 
for positrons, the potential minimum between planes may often contain quite 
a few bound states. We shall return to a more detailed comparison of negative 
and positive particles below.
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Strings. For negative particles, the number of bound states in a string 
potential is given by

v~ ço ---  f (72f f d2p.8 4n2h2J J 71

where = jd^/(2M) + U{r'), and we have assumed that the continuum 
potential vanishes far from strings. Performing the integration over transverse 
momentum, we obtain

< (IV'7)

(IV.6)
Ey < 0 ,

Again we may introduce the standard potential, which for strings leads to

(IV.8)

where d denotes the spacing of the atoms in the string. This corresponds to 
a rotationally symmetric potential inside the area, tt/q = (A57)"1, belonging 
to one string. Subtracting the value U(r0) from Eq. (IV.8), we obtain from
Eq. (IV.7)

Z2e2 /d (Ca)2logl
-Y 

Cay
(IV.9)

Since normally the log term in (IV.9) is of order 3-4, we obtain11

(IV. 10)

By partial integration, the formula (IV.7) may also be expressed in terms of 
the average square radius of the atoms,

oc
</î2> = Z21 4~iRi0(R)dR, (IV.11)

J 0

where q(R) is the electron density belonging to one atom. The result is

M
2h2

(IV. 12)

For the somewhat more realistic Lenz-Jensen potential, the average-square 
radius becomes5 <7?2> ~ 15a2, which again leads to (IV. 10). For 1-MeV electrons, 
this formula gives a number of bound states v~ ~ 4-10 for a major axis.
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For positive particles, the accessible area per string is ~ nr^. If the 
effective transverse-energy barrier is ~ corresponding to a critical
angle10,

(IV.13)

we obtain for the number of bound states (or rather states per string with 
energy below the barrier, cf. sec. III.l).

-(-)(— W3)'1- (IV.14)

\™o/

This number is normally quite large, vf ~ 102 for 1-MeV positrons.
Comparison of different cases. The relationship between the four es

timates, Eqs. (IV.3), (IV.4), (IV.10), and (IV.14) is illustrated in Table IV.1 
for 1-MeV electrons and positrons along a {110} plane and a <110> axis, 
respectively, in silicon and gold.

Table IV. 1.
Number of bound states for 1-Mev e+, e~ in Si and Au.

Silicon Gold

e+ e~ e+ e~

<110> 34 4 286 9

{110} 2.5 1.1 9 1.5

These examples clearly indicate the importance of distinguishing bet
ween positive and negative particles as well as between axial and planar 
cases. The difference in magnitude of the number of bound states for axes 
and planes is, to a large extent, due to the fact that the axial potential is two- 
dimensional, while the planar potential is one-dimensional. It might therefore 
be argued that the number of bound states in the planar potential should be 
compared to the square root of the corresponding number for strings. This, 
however, would not change the qualitative conclusion drawn from Table
IV. 1, that classical concepts may be applied more readily to axial than to 
planar motion. This difference is strongest for high values of Z2 where also 
the difference between electrons and positrons is most pronounced.

Mat.Fys.Medd.Dan.Vid.Selsk. 39, no. 10. 4
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IV.2.  Comparison of classical and quantal calculations

Although the approach towards a classical description is basically 
governed by the magnitude of quantum numbers, as derived semiclassically 
above, it must be borne in mind that the validity of classical estimates may 
depend strongly on the specific phenomenon under observation. In this sec
tion, we shall compare directly quantal and classical calculations of the di
rectional dependence of close-encounter yields34. The quantal calculations 
are based on the many-beam description, reviewed in Ch. II, which was 
seen to describe the experimental results fairly well, at least for planes. 
From such calculations, also the transverse energy levels are determined, 
and first we shall compare the number of bound states with the semiclassical 
estimates.

Bound states. The transverse energy levels for electrons and positrons 
moving along a {110} plane in silicon are shown in Fig. IV.2, as functions 
of projectile energy. Zero on the ordinate scale corresponds to a transverse 
energy equal to the potential maximum (cf. Fig. IV. 1). The levels are shown 
for incidence parallel to the plane as well as for an indidence angle equal to 
the Bragg angle. For negative transverse energy, corresponding to a bound 
state, the levels become independent of incidence angle because the compo
nents of the wave function belonging to different planar channels no longer 
communicate. Owing to the difference in shape of the potentials (cf. Fig.
IV. 1), this happens more rapidly with decreasing transverse energy for 
electrons than for positrons.

In Fig. IV.3, the number of bound states is shown compared to the es
timates, Eqs. (IV.3) and (IV.4), derived in the previous section. Also shown 
in the figure are results obtained for electrons moving along a < 111 > axis, 
compared to the estimate in Eq. (IV. 10). For this axis, the many-beam 
calculations were in Sec. II.7 shown to converge reasonably well with number 
of beams for an electron energy of 0.7 MeV, but for higher energies, the 
convergence is more doubtful, and the number of bound states may be 
slightly underestimated. In any case, the agreement is quite good for the 
axial as well as for the planar cases, considering the approximate nature of 
the semiclassical estimates. In particular, the predicted differences in both 
absolute magnitude and energy dependence are clearly confirmed.

Close-encounter yield. For the comparison between calculations of the 
yield of a close-encounter process such as large-angle scattering, we con
centrate on the planar case. First, the many-beam calculation is technically 
simpler and more reliable in this case, owing to the rapid convergence with
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Fig. IV.2 : Transverse energy levels for 
e- and e+ incident along a{ 110} plane 
in Si, as a function of projectile energy. 
The results are obtained from 20- 
beam calculations with a thermally 
averaged (Eq. (III.17)) Molière po
tential41. The levels indicated by solid 
and dashed curves are obtained for 
projectile incidence parallel to the 
plane and at the Bragg angle, re
spectively. Zero on the ordinate scales 
corresponds to the maximum of the 
Molière planar potentials (similar to 

the potential shown in Fig. IV.l).

number of beams. Second, the classical limit is less well-defined in the axial 
case, at least for electrons. The classical result derived in the Appendix is 
based on statistical equilibrium on an energy shell in transverse phase space. 
In the planar case, this assumption simply leads to results corresponding to 
an average over depth of penetration, and it is equivalent to the assumption 
in the quantal calculation of random relative phases of eigenfunctions. For 
axial channeling, the assumption is based on more subtle arguments, as dis
cussed in the Appendix.

Results for planar channeling of electrons and positrons along a {110} 
plane in silicon are shown in Figs. IV.4 and IV.5. A rapid convergence to
wards the classical result is indicated, but in contrast to the expectation 
based on the number of bound states shown in Fig. IV.3, the classical results 
seem to be somewhat more accurate for electrons than for positrons. In 
particular is the interference structure at Bragg angles considerably stronger 
for positrons. This may, however, not be so surprising when we consider the

Fig. IV.3: Comparison of the number 
of bound states derived from Fig. IV.2 
with the semiclassical estimates (Eqs. 
(IV.3) and (IV.4). Also shown are re
sults for a (111) axis derived from a 
60-beam calculation and compared to

Eq. (IV.10).

4*
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ip/ipp

Fig. IV.4: Comparison of classical and quantal calculations of the peak in large-angle-scattering 
yield for electrons incident on Si along a{110} plane. The classical yield is derived from formulas 
analogous to those given in Ref. 29 for positive particles, with a thermally averaged Molière 
planar potential41, including the contributions from the neighbouring plane (cf. Fig. IV.l). The 
quantal result is obtained from a 20-beam calculation (Eq. (11.23)), also with the Molière potential 
and including effects of thermal vibrations (Eqs. (11.15) and (11.17)). The classical result scales 
with the planar characteristic angle = ^(Ca/d)1'2, where d is defined through Nd2dp = 1 
(Ref. 29). For each projectile energy, the magnitude of the Bragg angle Qp is indicated (classical 

calculations: dashed curves; quantal calculations: solid curves).

fact that the close-encounter yield is proportional to the intensity of the trans
verse wave function at the atomic positions. For negative projectiles, lattice 
atoms are situated in a potential minimum, while for positive particles they 
are at potential maximum. In the latter case, the results therefore depend 
on the intensity of wave functions close to or inside classically forbidden re
gions, where the strongest deviations from classical behaviour occur. (Note 
also that for silicon, the difference in number of bound states between e+ 
and e~ is small (cf. Table IV.l).

In spite of the difficulties for axes mentioned above, it may be of interest 
to compare the quantal and classical calculations also for this case. A set of 
calculations for electrons incident along a <111> axis is shown in Fig. IV.6. 
At the higher energies, the agreement is, in fact, rather good. It should be 
noted that neither of the calculations need correspond very closely to reality. 
The neglect of inelastic scattering is for axial channeling of negative par-
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Fig. IV.5: Comparison of quantal (solid curves) and classical (dashed curves) results for positronss 
incident along {110} plane in Si. For details of the calculations, see Fig. IV.4.

Fig. IV.6: Axial peaks in large-angle-scattering yield for elctrons incident along a<lll}> direction 
in Si. Quantal results obtained from 60-beam calculations with Molière potential (formula anal
ogous to Eq. (11.23)) (solid curves). Classical results derived in the Appendix (Eq. (A21)), with 

the standard potential (Eq. (IV.8)) (dashed curves). 
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tides hardly justified even at rather shallow depths since the collisional 
broadening of closely bound states will be very large. But a statistical treat
ment is obviously much simplified if classical concepts may be applied, and 
this should be justified when the volume in phase-space available to bound 
particles is large enough to correspond to many quantum states.

Finally, for axial channeling of positive particles, the number of “bound” 
states is very large (cf. Eq. (IV. 14) and Table IV. 1), and therefore the number 
of beams needed in a many-beam calculation becomes prohibitively large. 
However, a comparison of experimental results for positrons and protons in
dicates8’9 that for this case, a classical treatment should be justified.
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Appendix: Classical Estimate for Axial Electron Channeling

In this appendix we shall derive the expression for the axial peak in 
yield for negative particles, which was used in Chapter IV for comparison 
with results from “many-beam” calculations. The calculation is based on a 
classical description of the particle motion. The transverse energy of the 
particles is assumed to be conserved, and for fixed transverse energy, their 
trajectories are assumed to fill out the transverse four-dimensional phase
space uniformly. We shall not discuss the validity of these assumptions in 
detail, but to put the results in perspective it may be useful to review briefly 
the situation for channeling of positive particles, which has been studied 
much more thoroughly.

Conservation of transverse energy for channeled particles is the basis of 
the channeling phenomenon and was discussed in detail by Lindhard5. 
At large depths of penetration, the distribution in transverse energy is mod
ified due to multiple scattering by electrons and by the small lattice irregular
ities introduced by the thermal motion of lattice atoms. The effect of these 
“dechanneling” processes may be calculated with reasonable accuracy from 
a diffusion equation5- 42> 43.

Statistical equilibrium, on the other hand, will be established only 
after a finite depth of penetration. The trend towards equilibrium was 
studied by Lindhard5. It was shown that when strings are assumed to be 
randomly distributed in the transverse plane, scattering of the channeled 
particles by these strings leads to a rapid approach towards equilibrium in 
transverse-momentum space, the characteristic length being much shorter 
than that corresponding to dechanneling. At smaller depths, results based on 
equilibrium may often be interpreted as corresponding to simple averages 
over azimuthal angle of incidence with respect to a string, and averages over 
oscillations with depth. As emphasized mainly by Barrett44- 45, such an 
interpretation may not hold in special cases, for example, for the yield of 
close-encounter reactions for incidence parallel to a string, which at small 
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depths is higher than estimated from equilibrium by an average factor of 2 
to 3. This is a consequence of the regular lattice arrangement of strings, 
which introduces additional approximately conserved quantities, namely 
transverse energy with respect to planes (or strings of strings5). This will 
hinder the approach towards equilibrium. A treatment in terms of equi
librium in restricted regions of phase space seems, however, straightforward 
but has not yet been carried out in detail46.

Thus for positive particles, the approximations of conservation of trans
verse energy and statistical equilibrium are consistent and provide a good 
starting point for a treatment of channeling phenomena. Deviations from these 
assumptions may then be treated as corrections to the basic picture. For 
negative particles, however, the situation is less clear. First, multiple scat
tering is stronger than for positive particles since the atomic scattering centers 
are situated at a minimum of the transverse potential. Second, the peak in 
yield is largely due to particles bound in an axial-potential minimum. Such 
particles interact with only one string, and since the potential is nearly 
symmetric around the string, angular momentum with respect to this string 
will be approximately conserved (Rosette motion47). Multiple scattering may, 
however, be strong enough to provide a trend towards equilibrium. In fact, 
the scattering is strong enough to make the description of the most strongly 
bound states somewhat uncertain. In the following we disregard these 
problems and base our treatment upon conservation of transverse energy and 
statistical equilibrium. The calculations can at least serve as an illustration 
of the classical treatment, which was discussed in Sec. III.2 and may, as for 
positive particles, provide a useful standard for comparison, also of experi
mental results6’13 (see also Fig. 1.6).

Emission

The derivation is analogous to that in Ref. 5 of the dip in yield for positive 
particles in the continuum approximation. We use the same notation and 
also consider emission of particles from a lattice atom, i.e., blocking rather 
than channeling. The two cases are related by reversibility5 or reciprocity7. 
If electrons with momentum p and velocity v are emitted isotropically from 
an atom at a distance r from a string, their distribution in transverse energy, 
Si» is given by

f I 1 for E, > U(r)
^(E^r) - d(E?a)ô(E1 - E(r) - Ey2) - ! 1 . (Al)

J 1 0 for E± < E(r)
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Here, E = 1/2 pu = 1/2 Mu2, where M is the relativistic mass (cf. Ch. II). 
The angle with the string is denoted <p so that Ey2 is the transverse kinetic 
energy. The transverse potential energy is determined hv the average string 
potential L7(r). In the following calculations, we once more apply Lindhard’s

standard potential,

(A2)

where is the characteristic angle for axial channeling (Eq. (IV. 13)), a 
the screening distance, and C ea j/3.

The probability of different displacements r is determined by thermal 
vibrations and denoted dP(r). For the distribution in transverse energy 
averaged over displacements, we obtain

71 (E±) =
j dP(r)J d(Ecp2)ô(Et -U(r)-E<p2)

By inserting into this formula the standard potential and a Gaussian dis
placement distribution, Lindhard obtained a simple analytical estimate of 
the dip in yield for positive particles.

Surface transmission
When the emitted particles pass the crystal surface, the transverse 

potential energy is lost and the angle y> with the string after transmission is 
determined by Eip2 = E - U(r). For the distribution in angle outside the 
crystal, we may write

P(E>2) -(dEJÇE^E^nÇEj), (A4)

where T(EX, Ey)2)d(Eip2) is the probability for a particle with transverse energy 
E in the crystal to leave the surface at an angle ip to the string. This pro
bability is determined by the spatial probability density of particles with 
transverse energy E±. In statistical equilibrium, the density in two dimensions 
is uniform in the allowed area, and we obtain

r° d (r2)-^-ô(Eip2-E1+U(r)). (A5)
0r(EC

Here we have, as usual, approximated the area per string in the transverse 
plane by a circular disc of radius r0, related to the spacing d of atoms in 
the string through nr2Q = (Nd)-1, where N is the density of atoms in the 
crystal. The radius f of the accessible area is given by
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G(f) = El for 

r = r0 for

< L/(r0)

> [7(r0)

By combining (A4) and (A5), we obtain

(A6)

(A7)

While for positive particles the difference between the distributions P(Ey>2) 
and tc(P±) implied by (A7) is important for Exp2 ~ 0 only29, the surface 
transmission is of major importance for negative particles. The two distri
butions are completely different. The function n(E^) defined by (A3) is 
below unity for all values of and has a tail stretching to E.-+ — æ, 
while P is only defined for Exp2 > 0 and has a strong increase above unity at 
Exp2 22 0. This peak contains the particles which inside the crystal have 
negative transverse energy, i.e., which are bound in the string potential.

Inserting into (A7) the emission distribution (A3), we obtain

(A3)

From this expression it is seen that P > 1. Thus the peak in yield at small 
angles xp is not compensated for by a descrease below unity at larger angles. 
This lack of compensation is a characteristic feature of the continuum string 
approximation5. In the refined treatment by halfway planes, negative 
‘shoulders’ stretching out to angles ~ 2a/d compensate for the excess yield at 
small angles.

Peak height
From formula (A8), we may calculate the peak height P(0),

By inserting a Gaussian distribution,

dP(r') Q « Gj.

(A9)

(A10)
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we obtain by partial integration

(All)

where y is Euler’s constant, y = 1.78. This estimate may be compared to 
the corresponding estimate in Ref. 11 for the standard potential with a
cut-off,

f 9 Ca
(.Yr) , r < Ca

|o
, r > Ca

leading to

P(0) ~ 1 + for Ca » g

(Al 2)

(Al 3)

While (All) leads to /J(0) ~ 5-6, formula (A13) predicts a value of P(0) ~ 
2-3. Since the potential decreases very rapidly and is essentially flat at large 
distances, the implicit assumption in the derivation of (All) of an attractive 
potential at all distances r may not be valid at distances r ~ r0. The cut-off 
at r = Ca in the potential (Al2), however, is probably at too small a distance 
Thus the two values may reasonably be regarded as upper and lower limits, 
respectively.

Angular dependence
With the potential (Al2) it is easily seen that the excess yield in (Al3) 

is multiplied by a factor exp(-2Eip2/Eip[) for particles incident at an angle 
ip to the string,

P(Eip2) ~ 1 + for Ca » q (A14)

as given in Ref. 11.
In order to obtain a reasonably simple analytical estimate with the 

standard potential (A2), we replace the Gaussian displacement distribution 
(A10) by

r' < Qo

r’ > Qo

(Al 5)

Inserting this distribution into (A9), we obtain for the peak height
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P(0) = 1 + log^. (Al 6)

In order to reproduce the result (All), we choose

(Al 7)

With the distribution (Al5), the integration in (AS) is straightforward,

r2(Eip2 + U (r))
(AIS)

where rx and r2 are determined by

t7(n) = U(Qo) - Erp2

U(fz) = U(r0) - Erp2.
(A19)

The two first terms correspond to bound particles with a maximum distance 
to the string not exceeding q0 and r0, respectively, while the third term 
corresponds to unbound particles. All integrations are elementary, and we 
obtain,

P(Erp2) = 1 + e-^^logCrllrl) (A20)

or inserting the value (Al9) for and r2,

|(Cu)2 + ?02]e2W ^2 I

|(Ca)2 + r2] e2^ - f ‘ (A21)

This formula is rather similar to (Al 4) for not too small angles. As might 
be expected, however, the inclusion of the outer shallow part of the potential 
leads to a steep increase in yield at small angles. In fact, the peak height is 
larger by a factor of ~ 2, and the full width at half maximum is therefore sig
nificantly smaller than the value dip = |/21og2 derived from Eq. (A14).
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